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Motivation: The required type and amount of numerical dissipation/Bter to accurately resolve 
all relevant multiscales of complex MHD unsteady high-speed shock/sheax/turbulence/combustion 
problems are not only physical problem dependent, but also v a y  from one flow region to  another. 
In addition, proper and efficient control of the divergence of the magnetic field (Div(B)) numer- 
ical error for high order shock-capturing methods poses extra requirements for the considered 
type of CPU intensive computations. 
Objective: The goal is to extend our adaptive numerical dissipation control in high order filter 
schemes [3] [2] and our new divergence-free methods for ideal MHD [4, 51 to non-ideal MHD that 
include viscosity and resistivity. See [lj for the form of non-ideal MHD to be considered. The key 
idea in [3, 23 consists of automatic detection of different flow features as distinct sensors to signal 
the appropriate type and amount of numerical dissipation/filter where needed and leave the rest 
of the region free of numerical dissipation contamination. These scheme-independent detectors 
are capable of distinguishing shochs/shears, flame sheets, turbulent fluctuations and spurious 
high-frequency oscillations. The detection algorithm is based on an artificial compression method 
(ACM) [3] (for shocks/shears), and redundant multiresoliltioii wavelets (WAV) [2] (for the above 
types of flow feature). These filter approaches also provide a natural and efficient way for the 
minimization of Div(B) numerical error [4, 51. 

difference operators as the base scheme for the inviscid flux derivatives. If necessary, a small 
amount of high order linear dissipation is used to remove spurious high frequency oscillations. 
For example, an eighth-order centered linw dissipation (AD8) might be included in conjunction 
with a spatially sixth-order base scheme. The inviscid difference operator is applied twice for 
the viscous flux derivatives.%lfter the completion of a full time step of the base scheme step, the 
solution is adaptively ,filterp?jby the product of a “flow detector” and the “nonlinear dissipative 
portion” of a high-resolution shock-capturing scheme. It is noted that the nonlinear dissipative 
portion of a high-resolution shock-capturing scheme that is higher than second order is not 
unique. In addition, the scheme independent wavelet flow detector can be used in conjunction 
with spatially compact, spectral or spectral element type of base schemes. The ACM and wavelet 
filter schemes using the dissipative portion of a second-order shock-capturing scheme 151 with 
sixth-mder spatid central base scheme for both the inviscid and viscous MHD flux derivatives 
and a foukh-order Runge-Kub method are denoted by ACM66 (ACM66+AD8) and WAV66 
(WAV66+,4D8). Computation using the same temporal and spatial scheme for Y the viscous MHD 
flux derivatives, and the standard fifth-order WENO scheme for the inviscid flux derivatives is 
denoted by WEN05. Computations using a second-order MUSCL and the Harten-Yee [SI TVD 
scheme for the inviscid MHD flux with the second-order central scheme for the viscous flux and 
a second-order Runge-Kutta method are denoted by MUSCL and TVD22, respectively. 
Nmnerid Examples: Ex3emive grid convergence stdies uskg WAlT56 and ACM66 for typ- 
ical ideal MHD test cases were conducted in [4, 51. More accurate solutions were obtained with 

- Basically J----- the filter scheme consists ___- of spatidll -_______ sixth-order or higher ~ non-dissiJative spatial --__- -- 

-~ - --- - -- - -  -- - - ~ __  - _ _  _ _ _  . 



2 H. C. YEE AND B. SJOGREEN 

‘vs.3’66 and kCM66 than with yfiTEN05, which is more CPU intensive. Figures i and 2 show 
the comparison among MUSCL, WEN05 and WAV66 of a non-ideal MHD Orszag-Tang vortex 
problem with Re = 1000 and resistivity coefficient of 100 at time T = 3.14. Computations for 
the corresponding inviscid case are included for comparison. The Orszag-Tang problem consists 
of periodic boundary conditions with smooth sinusoidal initial data [4, 51. Five levels of grid 
refinement (101 x 101 to 1601 x 1601) indicate that all the three high order schemes exhibit a 
similar accuracy on their density, velocity and pressure variables. The accuracy of their three 
magnetic field variables are, however, different. Studies show that both ACM66 (ACM66+AD8) 
and WAV66 (WAV66+AD8) are divergence free preserving for the entire time evolution whereas 
WEN05 or TVD22 are only divergence free preserving at the very early stage of the time evo- 
lution. Their Div(B) numerical error quickly increases from a L2-norm of to be larger 
than 1, once the viscous shocks/shears have formed. The top left blank subfigure of Fig. 1 by 

), and the botxom left subfigure by v v f i v  VU u u l c a w s  di-vergence hee preserving (iu 
WEN05 indicates its Div(B) numerical error. Figure 2 shows the time evolution of the Lz- 
norm of Div(B) numerical errors for the three methods. See [5] for the Div(B) contours and 
L2-norm of Div(B) for each scheme. Figures 3-5 show the comparison among the three meth- 
ods for a supersonic shock interacting with a magnetic cloud with the same R e  and resistivity 
coefficient as the first test case. Again the corresponding inviscid computations are included for 
comparison. For this test case, after the time evolution T > 0.04, very complex wave interactions 
occur at both physical boundaries. See [5] for the inviscid problem set up. Figures 5 shows the 
advantage of our adaptive numerical dissipation control over the standard MUSCL and W E N 0 5  
schemes on coarse solutions. Aside from the small- spurious oscillation, WAV66+AD8 exhibits 

-. the same resolution using a 101 x 101 grid as the WEN05 using a 201 x 201 grid. It is interesting 
to  note that the resolution of WAV66fAD8 using a 201 x 201 grid is comparable to WEN05 
using a 801 x 801 grid.(Figures 6 and 7 show the computations of a-MHD vortex pairing in a 
time-developing mixing-layer with the same R e  and resistivity coefficient as the first test case. 
See [3] for the basic gas dynamic flow set up. Here the initial data for the three magnetic field 
components are 0.1 in the z-direction and zero in the other two directions. This time-developing 
mixing-layer problem consists of a periodic boundary condition in the z-direction and an open 
boundary in the y-direction. For the shock/cloud problem and the magnetized mixing-layer prob- 
lem, although not all figures are shown, ACM66 (ACM66+AD8) and WAV66 (WAV66+AD8) 
give an overall improved accuracy over TVD22, MUSCL and WEN05. Machine zero Div(B) 
numericalerror--was -not obtained- for the entire- time evolution due to- the non-divergence-free - 

numerical boundary treatment at the open boundaries (see Fig. 3 top left subfigure). For most 
of the time evolution, the ACM66(ACM66+AD8) and WAV66 (TVAV66fAD8) exhibit orders 
of magni tde smaller Div(B) numerical error than TVD22, MUSCL and WEN05. See [6] for 
some issue on the stable numerical boundary condition treatment on high order base scheme 
and the importance of having a divergence-free numerical boundary treatment for complex wave 
interactions on open boundaries. 
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